Research

The Quantum Electronics Lab (LEC, from the name in Spanish) is an interdisciplinary research lab focused on applying optical methods to quantify and manipulate physical and biological processes. It is well equipped to perform high spatial and temporal resolution microscopy and spectroscopy. Established in 1992, it has produced important contributions to science and technology, as well as in teaching and science communication. Today, it is a regional leading lab in developing and applying new optical techniques in different areas of the natural sciences.

In the nanoplasmonics section of the lab, we study how the electromagnetic field is structured in the nanoscale when metallic surfaces are resonantly excited with light. We quantify the performance of new devices for the generation, manipulation and
transmission of light in the nanoscale; as well as plasmonic probes for nanoscopy and sensing. For this purpose, we characterize the response (linear and non-linear) of devices and metal-metal, metal-molecule, metal-semiconductor and metal-dielectric probes. We expect them to be building blocks of a new generation of hybrid systems with applications in nanophotonics, ultrasensible sensing and high resolution microscopy.

In the biological section of the lab, we study how biological function emerges from intra- and inter-cellular organization. These procecess These processes are the result of the interaction of large amount of nanometer sized molecules (e.g. proteins, DNA) that diffuse and are transported inside and outside the cell. Conventional, diffraction limited, microscopy cannot resolve these molecular interaction nor their dynamics. Therefore, we develop new methods that allow to quantify the mobility and interaction of moleculas in living cells.

Proyectos actuales

Dinámica 3D con procesos celulares

Si bien los procesos celulares in vivo ocurren en 3D, la microscopía celular (y el cultivo) han sido utilizados principalmente en 2D por las facilidades técnicas que presenta. Sin embargo, la cuantificación 3D es fundamental para entender procesos en áreas como el desarrollo.

Microscopía cuantitativa para Biología de Sistemas

Para entender como surge la respuesta celular en respuesta a estímulos y perturbaciones es necesario cuantificar la movilidad e interacción de moléculas nanométricas. Mas aún, es necesario correlacionar el estado de multiples moléculas.

Nanophotonics. Semiconductor nanocavities.

Nonlinear excitation of polariton cavity modes in ZnO nanocombs We study the linear and non-linear optical properties of semiconductor nano-micro cavities for applications in nanophotonics.